Problem 3

Let f be a function with the property that $f(0)=1, f^{\prime}(0)=1$, and $f(a+b)=f(a) f(b)$ for all real numbers a and b. Show that $f^{\prime}(x)=f(x)$ for all x and deduce that $f(x)=e^{x}$.

Solution

By definition, the first derivative is defined as

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Now make use of the property $f(a+b)=f(a) f(b)$.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h} \\
& f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} \frac{f(h)-1}{h}
\end{aligned}
$$

Since $f(0)=1$, this is an indeterminate form ($0 / 0$), and L'Hôpital's rule can be applied. Differentiate the top and bottom with respect to h.

$$
\begin{aligned}
f^{\prime}(x) & =f(x) \lim _{h \rightarrow 0} \frac{f^{\prime}(h)-0}{1} \\
f^{\prime}(x) & =f(x) f^{\prime}(0)
\end{aligned}
$$

Since $f^{\prime}(0)=1$, we have the desired result.

$$
f^{\prime}(x)=f(x)
$$

Now separate variables.

$$
\begin{aligned}
\frac{d f}{d x} & =f \\
\frac{d f}{f} & =d x \\
\ln |f| & =x+C \\
|f| & =e^{x+C} \\
f(x) & =A e^{x}
\end{aligned}
$$

$f(0)=1$ implies that $f(0)=A=1$. Therefore,

$$
f(x)=e^{x} .
$$

